blockmedian − filter to block average (x,y,z) data by L1 norm. |
blockmedian [ xyz[w]file(s) ] −Ix_inc[m|c][/y_inc[m|c]] −Rwest/east/south/north[r] [ −C ] [ −F ] [ −H[nrec] ] [ −Q ] [ −V ] [ −W[io] ] [ −: ] [ −bi[s][n] ] [ −bo[s][n] ] [ −f[i|o]colinfo ] |
blockmedian reads arbitrarily located (x,y,z) triples [or optionally weighted quadruples (x,y,z,w)] from standard input [or xyz[w]file(s)] and writes to standard output a median position and value for every non-empty block in a grid region defined by the −R and −I arguments. Either blockmean, blockmedian, or blockmode should be used as a pre-processor before running surface to avoid aliasing short wavelengths. These routines are also generally useful for decimating or averaging (x,y,z) data. You can modify the precision of the output format by editing the D_FORMAT parameter in your .gmtdefaults4 file, or you may choose binary input and/or output using single or double precision storage. |
xyz[w]file(s) |
3 [or 4] column ASCII file(s) [or binary, see −b] holding (x,y,z[,w]) data values. [w] is an optional weight for the data. If no file is specified, blockmedian will read from standard input. |
−I |
x_inc [and optionally y_inc] is the grid spacing. Append m to indicate minutes or c to indicate seconds. If one of the units e, k, i, or n is appended instead, the increment will be assumed to be in meter, km, miles, or nautical miles, respectively, and will be converted to the equivalent degrees longitude at the middle latitude of the region (the conversion depends on ELLIPSOID). If /y_inc is given but set to 0 it will be reset equal to x_inc; otherwise it will be converted to degrees latitude. If = is appended then the corresponding max x (east) or y (north) may be slightly adjusted to fit exactly the given increment [by default the increment may be adjusted slightly to fit the given domain]. Finally, instead of giving an increment you may specify the number of nodes desired by appending + to the supplied increment; the increment is then recalculated from the number of nodes and the domain. The resulting increment value depends on whether you have selected a gridline-registered or pixel- registered grid; see Appendix B for details. |
||
−R |
xmin, xmax, ymin, and ymax specify the Region of interest. For geographic regions, these limits correspond to west, east, south, and north and you may specify them in decimal degrees or in [+-]dd:mm[:ss.xxx][W|E|S|N] format. Append r if lower left and upper right map coordinates are given instead of wesn. The two shorthands −Rg −Rd stand for global domain (0/360 or -180/+180 in longitude respectively, with -90/+90 in latitude). For calendar time coordinates you may either give relative time (relative to the selected TIME_EPOCH and in the selected TIME_UNIT; append t to −JX|x), or absolute time of the form [date]T[clock] (append T to −JX|x). At least one of date and clock must be present; the T is always required. The date string must be of the form [-]yyyy[-mm[-dd]] (Gregorian calendar) or yyyy[-Www[-d]] (ISO week calendar), while the clock string must be of the form hh:mm:ss[.xxx]. The use of delimiters and their type and positions must be as indicated (however, input/output and plotting formats are flexible). |
−C |
Use the center of the block as the output location [Default uses the median location (but see −Q)]. −C overrides −Q. |
||
−F |
Block centers have pixel registration. [Default: grid registration.] (Registrations are defined in GMT Cookbook Appendix B on grid file formats.) Each block is the locus of points nearest the grid value location. For example, with −R10/15/10/15 and and −I1: with the −F option 10 <= (x,y) < 11 is one of 25 blocks; without it 9.5 <= (x,y) < 10.5 is one of 36 blocks. |
||
−H |
Input file(s) has Header record(s). Number of header records can be changed by editing your .gmtdefaults4 file. If used, GMT default is 1 header record. Use −Hi if only input data should have header records [Default will write out header records if the input data have them]. Not used with binary data. |
||
−Q |
(Quicker) Finds median z and (x, y) at that z [Default finds median x, median y, median z]. |
||
−V |
Selects verbose mode, which will send progress reports to stderr [Default runs "silently"]. |
||
−W |
Weighted modifier[s]. Unweighted input and output has 3 columns x,y,z; Weighted i/o has 4 columns x,y,z,w. Weights can be used in input to construct weighted median values in blocks. Weight sums can be reported in output for later combining several runs, etc. Use −W for weighted i/o, −Wi for weighted input only, −Wo for weighted output only. [Default uses unweighted i/o]. |
||
−: |
Toggles between (longitude,latitude) and (latitude,longitude) input and/or output. [Default is (longitude,latitude)]. Append i to select input only or o to select output only. [Default affects both]. |
||
−bi |
Selects binary input. Append s for single precision [Default is double]. Uppercase S (or D) will force byte-swapping. Append n for the number of columns in the binary file(s). [Default is 3 (or 4 if −W is set) columns]. |
||
−bo |
Selects binary output. Append s for single precision [Default is double]. Uppercase S (or D) will force byte-swapping. Append n for the number of columns in the binary file(s). |
||
−f |
Special formatting of input and output columns (time or geographical data). Specify i(nput) or o(utput) [Default is both input and output]. Give one or more columns (or column ranges) separated by commas. Append T (Absolute calendar time), t (time relative to chosen TIME_EPOCH), x (longitude), y (latitude), or f (floating point) to each column or column range item. Shorthand −f[i|o]g means −f[i|o]0x,1y (geographic coordinates). |
The ASCII output formats of numerical data are controlled by parameters in your .gmtdefaults4 file. Longitude and latitude are formatted according to OUTPUT_DEGREE_FORMAT, whereas other values are formatted according to D_FORMAT. Be aware that the format in effect can lead to loss of precision in the output, which can lead to various problems downstream. If you find the output is not written with enough precision, consider switching to binary output (−bo if available) or specify more decimals using the D_FORMAT setting. |
To find 5 by 5 minute block medians from the double precision binary data in hawaii_b.xyg and output an ASCII table, run blockmedian hawaii_b.xyg −R198/208/18/25 −I5m −bi3 > hawaii_5x5.xyg |
blockmean(l), blockmode(l), GMT(l), gmtdefaults(l), nearneighbor(l), surface(l), triangulate(l) |